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Discrete effects of the plasma irradiated by an ultrashort, intense laser pulse are investigated.
Although, for most plasmas of interest, the damping of the laser pulse is due to collective plasma
effects, in certain regimes the energy absorbed in the plasma microfields can be important. A
scattering matrix is derived for an electron scattering off an ion in the presence of an intense laser
field. © 1996 American Institute of Physics.@S1070-664X~96!01604-4#

I. INTRODUCTION

The increasing degree of interest in high-intensity lasers
motivates a theoretical examination of the behavior of
plasma in the fields of such lasers. Many recent studies are
devoted to analysis of collective behavior;1 however, there is
a need, addressed here, to examine discrete particle effects
inside a very short electromagnetic pulse of linear polariza-
tion and of arbitrary amplitude.

The problem of collisional absorption2 has been studied
extensively for low-intensity fields, where the electron veloc-
ity is not relativistic, and for time scales longer than colli-
sional time. Now, very high-intensity fields~1018W/cm2 and
above! can be achieved in very short pulses.3 For underdense
plasma, the duration of such pulses is less than an inverse
plasma frequency, and, hence, for ideal plasmas, even less
than a collision time. Therefore, to find the amount of energy
deposited into the plasma due to its discreteness, a standard
approach, such as by using the Fokker–Planck collisional
operator, may not be valid. Neither is one allowed to assume
that the electron motion is nonrelativistic.4

In this paper, we address collisional effects in just this
ultraintense, ultrashort laser regime, and we find the change
in the energy of plasma microfields~usually referred to as a
correlational energy! due to the interaction of electrons with
the laser pulse. Although for plasma with an electron tem-
peratureTe>1 eV and a very intense,h;1, short 0.1 ps laser
pulse, the damping of the pulse is due to collective effects,
and the collective energy sets up a plasma wake. Here the
nonlinearity parameterh is h5ea/mc2, wherea is a wave
vector potential,c is the velocity of light,2e is the electron
charge, andm is the electron mass. On the other hand, for a
plasma atTe;0.01 eV and for a very short, moderately in-
tense pulse, we find that the correlational energy can be
greater than the energy stored in the plasma oscillations. In-
terestingly, in this regime, in which a plasma is irradiated by
the laser waves, discrete~collisional! effects dominate col-
lective effects. In contrast, in an ideal plasma, in the absence
of any external fields, collisional effects are always down in
magnitude by a factor ofnelD

3 , wherene is an electron den-
sity andlD is a Debye length.

The problem of two particle collisions in the presence of
an intense laser pulse remains unexplored for flux densities,
so intense that the particle motion becomes relativistic. It
corresponds to the nonlinearity parameterh5ea/mc being
of the order unity. For visible light,h;1 for a flux density

;1018 W/cm2. Here we analyze the case of the scattering of
an electron by the ion in the laser field at such intense flux
densities. The final answer is presented in terms of a scatter-
ing matrix, which describes interaction of two particles both
inside and outside the laser pulse.

Suppose a wave packet propagates in thex direction,
with vector potentiala(t2x/c). Suppose further thata~t2x/
c,0!5a(t2x/c.T)50. The pulse is then characterized by
two time scales: its mean frequencyv̄ and its total phase
durationT. The frequency width of the wave packet isdv,
such thatT dv;1. We assume that the pulse travels at the
velocity of light, which is a good approximation for waves in
an underdense plasma. This approximation becomes even
better for very intense waves.4

Describing the interaction of plasma with a laser pulse of
high intensity~h;1! is complicated, because one cannot use
a dipolar expansion,5 which assumesh!1. But the limit of a
very short pulse is tractable.5 If the pulse spectra is broad
enough, i.e.vp/dv,1, so that the pulse duration is shorter
than the time for the electrons to set up a collective response,
the plasma collective field can be treated as a perturbation to
the laser field. Recent advances in pulse compression3 now
make possible pulses as short asT;0.1 ps, for which the
above inequality holds for plasmas with densities up to 1018

cm23.
Consider an electron and an ion~Z51! inside a laser

pulse. For distances between them such thate2/r 2,eav/c,
one can treat the ion field as a perturbation to that of the
laser. For the fluxes under consideration~h;1!, the mini-
mum distance up to which the above inequality holds is
rmin;Ar el, wherer e5e2/mc2 is the classical radius of an
electron, andl is the wavelength of the radiation. For visible
light, rmin;1029 cm. Classical mechanics can be employed if
the de Broglie wavelength of an electronle5h/mgv;1029

cm ~g 5 1/A12v2/c2, andv is the typical electron velocity
in the laser pulse! is less than the distance between two par-
ticles. We see that over the range of distances, from` to
le;1029 cm, where classical mechanics is valid, the ion
field remains less than that of the laser, and we can employ
perturbation theory.

The paper is organized as follows: In Sec. II we calculate
the correlational energy after the pulse. In Sec. III, we study
the relativistic interaction of an electron with an ion in the
presence of a laser pulse. In Sec. IV, we generalize our re-
sults to finite initial velocity and derive the scattering matrix
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for ultrashort interactions. In Sec. V, our results are summa-
rized.

To simplify the presentation in Sec. III, we usem5c
52e51, so the nonlinearity parameterh is, in fact,a; else-
where, all quantities are expressed in cgs units.

II. CORRELATIONAL ENERGY AFTER THE PULSE

Consider an ultrashort laser pulse, propagating in thex
direction, with the widthdv larger than the plasma frequency
vp . In this limit, the plasma collective field is smaller than
that of the pulse. To zeroth order invp

2/dv2, the only effect of
the laser in the framework of the fluid model is a displace-
ment of each electron in the direction of the pulse by1

h05
1

2 S e

mc2D
2E

0

T

a2~u!du. ~1!

This displacement sets up a plasma wave behind the pulse
with the energy given by5 epl52ph0

2n2e2. One can treat this
value as a part of the total energy deposited in the plasma by
the pulse. Another part comes from the change of the energy
stored into the microfields~we neglect the plasma correc-
tions to the exit velocity and displacement for very short
pulses5!, which are always present due to the discrete nature
of the plasma. This energy is usually referred to as a corre-
lational energy.6 Its equilibrium quantity is obtained by av-
eraging the potential energy of two particles, using the two-
particle equilibrium correlation function,

gss8~r !512
qsqs8
Te

exp~2r /lD!

r
, ~2!

whereTe is the plasma temperature,lD is the Debye length,
and r is the distance between two particles with chargesqs
andqs8.

While the laser pulse clearly disturbs the plasma two-
particle equilibrium distribution, for a short pulse, each De-
bye cloud is almost intact right after the pulse, since we
assumedv.vp . The change in electron temperature due to
collisions with the ions inside the pulse is small,dTe!Te .
Hence, one can use for the quantitieslD andTe their initial
values before the pulse. The correlational energy density of
the plasma consists of three parts:

ecorr5eee1e i i1eei , ~3!

representing contributions from electron–electron, ion–ion,
and electron–ion correlations, respectively. Since, in our
model, the only effect of the laser is an instantaneous dis-
placement of each electron by the distanceh0, it is clear that
the interaction with the wave will change only the termeei .
Then its value after the pulse,ẽei , is determined by the po-
tential energy of the ion in the displaced cloud of electrons,
namely

ẽei5nqif~r i !, ~4!

wheref~r i! is an electric potential of the cloud at the ion’s
position andn5ne5ni is the plasma density.

Let us choose the coordinate system with its origin at the
center of a spherically symmetric electron cloud~see Fig. 1!.

Then the radius vector of the ion is2h0. The electrostatic
potential is determined from the solution of the Poisson
equation,

f~2h0!5E ne~r !qe
ur2h0u

dV, ~5!

wherene(r )5negei(r ) is the cloud density. Using an expan-
sion in Legendre polynomials,

1

ur1h0u
5 H ~1/r !S l~h0 /r ! lPl~cosu!,

~1/h0!S l~r /h0!
lPl~cosu!,

if h0,r ,
if h0.r ,

the integration in Eq.~5! can be carried out easily. We find an
energy density differenceDecorr52pn2e2h0b0 , where
b05uqeqi u/Te is the classical distance of closest approach.
The ratio of the increase in the correlational energy to the
energy of collective plasma oscillations is

Decorr
epl

5
b0
h0

50.96310217
dv

2ph2Te~eV!
, ~6!

indicating the relative importance of collective effects in
comparison to single-particle effects. Depending on the
plasma temperature and the pulse duration, this fraction can
be either greater or less than unity. This is in contrast to an
ideal plasma, not subject to any external fields, where dis-
crete~collisional! effects are always down in magnitude by
;nlD

3 . For example, a very short,T;0.01 ps, intense,
h;0.2 electromagnetic pulse, propagating through the
Earth’s ionosphere plasma~n;105 cm23, Te;0.01 eV,
nlD

3;1.23103!, deposits twice as much energy into the
plasma microfields than into plasma oscillations. We show
the regions whereDecorr/epl.1, in Fig. 2~a!.

The quantityDecorr complements the picture of discrete
losses investigated in Ref. 5. It is interesting to compare it
with the incoherent Compton lossesvp

2S @Eqs.~38! and~52!
in Ref. 5#. Their ratio scales like

Decorr
eCompt

5
1

4p S vp

v̄ D 2 mc2

h2Te
5
6.753104

h2Te~eV! S vp

v̄ D 2. ~7!

In Fig. 2~b!, we distinguish, by regions inh2Te space,
where each of these loss mechanisms dominates.

III. SCATTERING OF AN ELECTRON BY AN ION IN
THE PRESENCE OF A LASER PULSE

We will briefly review the interaction of a single electron
with a pulse of high intensity, and then we will carry out the

FIG. 1. Displacement of the Debye cloud due to interaction with the laser
pulse.
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analysis in the presence of the ion field. Let us start with
equations of motion for an electron in a laser pulse of linear
polarization along they axis,

dp

dt
5ȧ1v3~n3ȧ!,

dg

dt
5ȧ–v, ~8!

where the wave vectorn is in the x direction, the electron
momentum is denoted byp, and the velocity byv. The over-
dot stands for differentiation with respect to the phase argu-
ment,t2x, andg is the relativistic energy. After some alge-
bra, one can find that the quantityg2n–p is a constant of
motion, which is equal tog2n–p51 for an electron with
zero initial velocity. Using this invariant, we solve for the
proper time,t5t2x, and the displacement

hx~t!5
1

2 E
0

t

a2~u!du, hg~t!5E
0

t

a~u!du, hz50.

~9!

In obtaining ~9! we have used conservation of canonical
transverse momentum,n3p5n3a. For an electron initially
at the origin, the kinetic energy is then given by

g~t!511
1

2
a2~t!. ~10!

Let us now address the problem of interaction of an elec-
tron with an ion in the presence of a laser pulse. We assume
the ion with charge stateZ51 to be stationary at the origin
and the electron to have zero velocity and position
rW i5(xi ,yi ,zi), when it is hit by the pulse at the point A~see
Fig. 3!. During the body of the pulse the electron will move
along the trajectory AB, at the end of which it will gain the

exit velocity VB due to interaction with the ion. We now
proceed to calculate the exit velocity and position of the
electron.

The natural length of this problem isl, the wavelength
of a laser radiation. The Coulomb force on the electron in
dimensionless form~we express lengths in terms ofl! is
then given by

f52z
r

r 3
, ~11!

where z5r e/l, with r e being an electron radius. Now one
can write down an equation of motion of an electron in the
fields both of the ion and of the laser:

dp

dt
5ȧ1f1v3~n3ȧ!,

dg

dt
5~ ȧ1f!–v. ~12!

By assumption, the ion field is smaller than that of the
laser for distances up to 1029 cm, so we expand all dynami-
cal quantitiesh, g, and so on, about the exact result, Eq.~9!
and Eq.~10!, the expansion parameter beingf /va. Accord-
ingly, the first-order system of equations to be solved is

dp1
x

dt
5
1

2
~ t12h1

x!ä2~ t02h0
x!2z f x~t0!g0~t0!, ~13!

dg1

dt
5
1

2
~ t12h1

x!ä2~ t02h0
x!2z@ f x~t0!p0

x1 f y~t0!p0
y#,

~14!

dh1
x

dt
5p1

x , ~15!

dt1
dt

5g1 , ~16!

dp1
y

dt
5~ t12h1

x!ä~ t02h0
x!2z f y~t0!g0~t0!, ~17!

dp1
z

dt
52z f z~t0!g0~t0!, ~18!

FIG. 2. Regions of relative importance ofDecorr in comparison with~a!
energy of collective plasma oscillations and~b! spontaneous Compton
losses. Curves 1, 2, and 3 correspond to the electron temperature,Te , 1, 0.1,
and 0.01 eV, respectively. The pulse durationdv21 is given with respect to
dv0

2152p310213. The region above each curve in~a! corresponds to
Decorr/epl.1, while in ~b! it corresponds toDecorr/ecompt,1.

FIG. 3. An electron moves along the trajectory AE in the field of the ion~at
the origin!, when it is hit by the pulse at point A. It is forced to move along
the new trajectory AB, which is almost the same as its trajectory in the field
of the pulse alone~drifting figure eight!. At point B it leaves the pulse with
the exit velocityVB and starts to move along hyperbola CD, BF being its
axis of symmetry. Note that trajectories AE, AB, and CD do not necessarily
lie in the same plane.
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wheret05t02h0
x and f~t0! is a force vector, with an elec-

tron’s coordinates lying on its zeroth-order trajectory~part
AB in Fig. 2!,

x~t0!5xi1h0
x~t0!, y~t0!5yi1h0

y~t0!, z~t0!5zi .
~19!

We can now subtract Eq.~14! from Eq.~13! to obtain an
expression forg12p1

x. Then we solve for the perturbation of
the proper time,

g12p1
x5zE

0

t

@ f x~u!2 f y~u!a~u!#du, ~20!

t12h1
x5zE

0

t

dsE
0

s

@ f x~u!2 f y~u!a~u!#du. ~21!

With these expressions for the first-order quantities, Eq.
~13!, can be solved explicitly. After integration twice by
parts, we obtain

p1
x5

z

2 S ȧ2~t!E
0

t

duE
0

u

@ f x~v !2 f y~v !a~v !#dv

2a2~t!E
0

t

@ f x~v !2 f y~v !a~v !#dv D
2zE

0

tS a3~u!

2
f y~u!1 f x~u! D du,

and similar expressions forp1
y andp1

z. Now the exit velocity
can be calculated usingV5p01p1(T)/[g0(T)1g1(T)] to
give

Vc
x52zE

0

TS f x~u!1
1

2
a3~u! f y~u! Ddu, ~22!

Vc
y5zE

0

TFa~u! f x~u!2 f y~u!S 11
3

2
a2~u! D Gdu, ~23!

Vc
z52zE

0

T

f x~u!S 11
1

2
a2~u! Ddu. ~24!

The subscript ‘‘c’’ ~cold! indicates that this solution as-
sumed zero initial electron velocity. The exit displacement,
given in the Appendix, can be obtained by integratingp1
with respect to the proper time.

The above equations allow simple interpretation. One
can treat the zeroth-order trajectory of the electron~Fig. 3! as
a finite-mass string in an external force field, its shape given
by parametrized equations~19!. This string has a mass tensor
varying overu ~u being a parameter, characterizing a current
position on the string!. Then the integrations in Eqs.~22!,
~23!, and ~24! are, in effect, averaging the force of the ion
over the inverse mass tensor of the string, the inverse tensor
components given by respective coefficients in these equa-
tions:

mxx
2151, mxy

215 1
2a

3~u!, ~25!

myx
215a~s!, ~26!

myy
215@11 3

2a
2~u!#, ~27!

myz
215mzy

215mxz
215mzx

2150, ~28!

mzz
215@11 1

2a
2~u!#. ~29!

This analogy will help us to understand dependence of
Vc on the electron’s initial positionr i . We fixedyi50 and
zi50.1 and plottedVc vs xi ~see Figs. 4 and 5!. For simplic-
ity, we chose the form of the pulse to bea(u)5sin(u), 0,u
,T, whereT56p. The periodic behavior ofVc vsxi ~Fig. 4!
is due to the periodic structure of the electron’s zeroth-order
trajectory in this direction. The spikes on the curves corre-
spond to the minimum approach to the ion. Their amplitude
varies with respect toxi , because the ion divides the string in
varying ratio. The spikes are singular asz→0, because the
distance of minimum approach also tends to 0. The plots of
Vc vs yi ~Fig. 5!, xi andzi being fixed, do not exhibit peri-
odicity, because of the lack of periodicity in the zeroth-order
trajectory of the electron in this direction.

The exit velocity and displacement fully describe the
scattering in the presence of the pulse. In Sec. IV, we use
these quantities as initial conditions for the electron motion
in the field of the ion after the pulse to describe the whole
scattering process.

FIG. 4. Components of the exit velocity,Vc
x ,Vc

y ,Vc
z, respectively, versus the

initial xi position of the electron, withyi50, zi50.1. The magnitude of
velocity is presented in terms ofc5331010 cm—velocity of light, and all
lengths are measured inl51025 cm—wavelength of radiation. The form of
the pulse is chosen to bea(u)5sin(u), 0,u,T, whereT56p. As z→0 the
spikes on all graphs tend to6`, forming discontinuities. This corresponds
to electron crossing the ion at some point on its zeroth-order trajectory. The
periodic behavior of all plots is due to periodicity of the zeroth-order trajec-
tory of the electron in thex direction.
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IV. SCATTERING MATRIX

In this section we extend the analysis given in Sec. III to
the case of nonzeroVi initial velocity of an electron and
obtain scattering matrix. We assume thatVi is nonrelativistic
and find first-orderO(Vi) corrections to our previous results.
First, let us modify the quantities describing the electron mo-
tion in the wave alone. The invariant of motiong02p0

x will
be

g02p0
x512Vi

x . ~30!

The relation between the phase argument ofa and the proper
time t0 is then

t02h0
x5~12Vi

x!t0 . ~31!

They component of momentump0
y is modified in a straight-

forward way,

p0
y5Vi

y1a. ~32!

Equations~30!, ~31!, and~32! lead to the following expres-
sion for the electron kinetic energy:

g0~t0!511 1
2a

2~t0!1a~t0!Vi
y1 1

2a
2~t0!Vi

x . ~33!

To findO(Vi) corrections to the exit velocityVc , given
in ~22!, ~23!, and~24!, we will now perform the same analy-
sis as in Sec. III with new values oft02h0

x, p0
y, etc., given in

~30!, ~31!, ~32!, and~33!, to arrive at

S Vx

Vy

Vz
D 5S Vc

x

Vc
y

Vc
z
D 1S axx axy axz

ayx ayy ayz

azx azy azz

D S Vi
x

Vi
y

Vi
z
D . ~34!

The matrixai j is given in the Appendix. It does not exhibit
any symmetry, because the electron–laser and electron–ion
interactions possess different symmetries.

So we know the exit velocity and displacement after the
laser pulse. Next, we consider the Coulomb scattering in the
field of the ion, after the electron has interacted with the
pulse, to obtain the final velocity of the electron at infinity.
The exit velocity and displacement upon leaving the pulse
are now taken as initial conditions in the scattering by the
ion. The electron energy and its angular momentum are in-
variants of motion. At the very moment the electron exits the
pulse,

L5uV3Ru, E5
1

2
V22

z

R
, ~35!

whereR is the radius vector of the electron at that moment
~see the Appendix!.

Let us introduce the contraction coefficient,

k5
A2E
V

, ~36!

which is the ratio of the velocity at infinityV` to the exit
velocity V. The impact parameter is then

b5
uV3Ru
Vk

. ~37!

We are left to find the anglex betweenV` andV5VB

~see Fig. 3!. It can be done most easily in the plane of col-
lision. Using the exact solution for the electron motion, we
relate anglesf andf` to R andb,

cosf5
b/R2bv /b

A11~bv
2/b2!

, cosf`5
~bv /b!

A11~bv
2/b2!

, ~38!

wherebv51/V`
2 . Note that we usem5c5e51 units in this

section. The angle of rotationx is then given by

x5 Hf2f` if ~V–R!,0,
f1f`2p, if ~V–R!.0, ~39!

where the sign ofV–R determines whether an electron will
follow part BC or BD of the trajectory~Fig. 3!. The scatter-
ing matrix, which relatesV` to V, can be written in the form

Cik5k@cosxd ik1sin xe i jknj1~12cosx!nink#. ~40!

Its structure is simple: it contracts the absolute value of
velocity fromVB toV` and rotatesV in the plane of collision
by the anglex, given in ~39!. The axis of rotation is parallel
to the vectorn5~R3V!/(RV), which is normal to the plane
of collision. It turns out that matrix~40! can be most easily
obtained through the quaternion formalism. The quaternion,
which rotates a vector around axisn by an anglex, is

L5cos
x

2
1n sin

x

2
. ~41!

FIG. 5. Components of the exit velocity,Vc
x ,Vc

y ,Vc
z, respectively, versus the

initial yi position of the electron, withxi50, zi50.1. Plots do not exhibit
any periodicity due to the lack of periodicity in the zeroth-order trajectory of
the electron in they direction.
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The rotation of an arbitrary vectorb can be then written in
the form

b85L+b+L̃, ~42!

where + stands for quaternion multiplication andL̃ is the
conjugated quaternion. After some algebra, Eq.~42! gives
matrix Cik ~40!.

Now we can write the final velocityV` as a product of
two matrices, we have found

V`
l 5Cl j ~a jkVi

k1Vc
j !. ~43!

Equation ~43! describes the whole scattering process from
point A to` ~Fig. 3!, which includes the interaction with the
laser and Coulomb scattering in the field of the ion.

The expression in parentheses isVB , the exit velocity of
the electron due to the interaction with the field of a single
ion. It was obtained via linearization around the zeroth-order
trajectory of the electron. This description of the scattering
process can be incorporated into a collisional operator by
averaging over the initial positionr i of the electron,

7 in order
to describe the plasma response to several short pulses. The
derivation of such a collisional operator is, however, beyond
the scope of this paper.

V. DISCUSSION AND CONCLUSIONS

In summary, in this paper we investigated the role of
discrete particle effects in the energy absorption from an ul-
trashort laser pulse of high intensity. It was shown that for
very short ~<0.09 ps! and moderately intense~h;0.01!
pulses the change in correlational energy of the plasma at 1
eV temperature is greater than the energy stored in plasma
oscillations. This dominance of discrete~collisional! over
collective effects, even whennlD

3@1, is opposite to the usual
collisional effects, which are always down in magnitude by
nlD

3 . We note, however, that for very intense pulses,h;1
with duration;0.1 ps, the energy of plasma oscillations is
greater than the correlational energy, according to Eq.~6!.

Although collisions due to initial nonrelativistic thermal
velocity do not take place during the laser pulse, each elec-
tron acquires a relativistic velocity in the laser pulse and
moves a certain distance in the fields of the ions. As a result
of these background fields, the exit velocity at the end of the
pulse is affected. This process can be called an ‘‘induced
collision’’ to distinguish from an ordinary Coulomb collision,
when the only fields present are those of the particles them-
selves.

The scattering matrix for the induced collisions, Eqs.
~22!–~24!, and ~34!, is applicable to electron–ion collisions
in the presence of the intense laser pulses. The corrections to
the exit velocity and displacement of the electron can also be
used to obtain a collisional operator that would describe the
influence of several short pulses on the plasma. This is, how-
ever, beyond the scope of the present paper.
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APPENDIX: CALCULATION OF THE SCATTERING
MATRIX

Let us write first-order corrections to the exit displace-
ment due to the ion field. They are obtained by integrating
p1
x(t),p1

y(t),p1
z(t), respectively, which gives

h1
x52zE

0

T

a2~u!duE
0

u

@ f x~s!2 f y~s!a~s!#

2zE
0

T

duE
0

uFa3~s!

2
f y~s!1 f x~s!Gds,

h1
y52zE

0

T

2a~s!dsE
0

s

@ f x~s!2 f y~s!a~s!#1zE
0

T

a~s!

3@ f x~s!2 f y~s!a~s!#ds2zE
0

T

duE
0

u

f y~s!

3S 11
1

2
a2~s! Dds,

h1
z52zE

0

T

dsE
0

s

f z~u!S 11
1

2
a2~u! Ddu.

Now we will determine coefficients of theai j matrix
~34!.

It is easy to find, using~30!, ~31!, ~32!, and ~33!, that
equations of trajectory with the first-orderO(Vi) corrections
can be written as

S x0
y0
z0
D 5S xi

yi
zi
D 1S sxx sxy 0

syx syy 0

0 0 szz

D S Vi
x

Vi
y

Vi
z
D 1S h0xh0y

0
D ,

where thesi j matrix coefficients are given by

sxx~t!5E
0

t

@11a2~u!#du, sxy~t!5E
0

t

a~u!du,

syx~t!5E
0

t

a~u!du, syy~t!5szz~t!5t.

And the zeroth-order trajectory is given by Eq.~9!.
We will denote the electron’s radius vector, following a

zeroth-order trajectory, by

r ~t!5$@xi1h0
x~t!#21@yi1h0

y~t!#21zi
2%3/2.

Then, after analysis similar to that of in Sec. III, theai j

matrix components are

axx512zE
0

TS f x~s!@11a2~s!#1
1

2
a3~s! f y~s!

2
sxx~s!1 1

2syx~s!

r 3~s!
D ds,
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axy52zE
0

TS a~s! f x~s!1
1

2
a2~s! f y~s!

1
sxy~s!1 1

2a
3~s!syy~s!

r 3~s!
D ds,

axz52zE
0

T 1

2
a2~s! f z~s!ds,

ayx52zE
0

T

a~s!dsE
0

sS f x~s!2a~s! f y~s!

1
sxx~s!2a~s!syx~s!

r 3~s! Dds
2zE

0

T 11 1
2a

2~s!

r 3~s!
dsE

0

s

a~u!du2zE
0

T

f y~s!

3@11a2~s!#ds,

ayy512zE
0

T

a~s!dsE
0

sS sxy~u!2a~u!syy~u!

r 3~u!

2 f y~u! Ddu2zE
0

TFa~s! f y~s!1syy~s!

3S 11
1

2
a2~s! D Gds,

ayz52zE
0

T

a~s!dsE
0

s

f y~u!du,

azx52zE
0

T

f z~s!@11a2~s!#ds,

azy52zE
0

T

f z~s!a~s!ds,

azz512zE
0

T szz~s!@11 1
2a

2~s!#

r 3~s!
ds.
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